
1 
 

CMU MSP 36602: Intro to UNIX and Scripting: Part 2 
H. Seltman Feb 13, 2019 

I. Shell Scripting with bash 

a. A shell script can carry out a simple set of commands, or it can be a complex 
program with complex inputs and outputs. 

b. Here is a simple shell script called bscript: 
#!/bin/bash 
# Simple info script (no arguments) 
# Shows home, wd, text files, and files starting with 'upper' 
echo Your home is $HOME 
echo You are now in $PWD 
echo Here are the text files: 
ls *.txt 
echo Here are the last 2 files starting with \'upper\' 
ls -l upper* | tail -n2 
 
Sample use: 
bash-3.1$ bash bscript 
bash-3.1$ chmod u+x bscript 
bash-3.1$ bscript     [or ./bscript if wording dir. not on path] 
Your home is /TOIL-U3/hseltman 
You are now in /TOIL-U3/hseltman/=A602/Hadoop 
Here are the text files: 
abc.txt  CarlEmail.txt  counts.txt  two.txt 
Here are the last 2 files starting with 'upper' 
-rw-r--r-- 1 hseltman users  626 Mar 15 17:24 upper.c 
-rw-r--r-- 1 hseltman users 1128 Mar 16 17:09 upper.o 

  



2 
 

c. Enhancement #1: inputs as numbered parameters (bscript1): 

#!/bin/bash 
# Usage: bscript1 startingFileNameLetters 
# Show the script name and the last 2 files 
# starting with 'startingFileNameLetters'. 
 
echo bscript1 was called with $# parameter\(s\) 
 
echo The current program is $0. 
echo Here are the last 2 files starting with \'$1\' 
ls -l "$1"* | tail -n2 

Sample use: 

bash-3.1$ bscript1 bscr 
bscript was called with 1 parameter(s) 
The current program is ./bscript1. 
Here are the last 2 files starting with 'bscr' 
-rwxr--r-- 1 hseltman users 179 Mar 17 08:20 bscript 
-rwxr--r-- 1 hseltman users 117 Mar 17 08:45 bscript1 

 

Details: 

The zeroth parameter ($0) when calling a script is the name or the script.  The other 
parameters are $1, $2, …. 

The syntax “$#” counts the parameters past the script name. 

 

  



3 
 

d. Enhancement #2: if statements (bscript2): 
#!/bin/bash 
# Usage: bscript2 startingFileNameLetters maxFiles 
# Shows last 'maxFiles' starting with 'startingFileNameLetters' 
 
# Assure valid parameter count 
if [[ $# -lt 1 || $# -gt 2 ]] 
then 
  echo Usage: $0 startingFileNameLetters [maxFiles=3] 
  exit 1 
fi 
 
# Default 'maxFiles' to 3 and assure it is positive 
if [[ $# -eq 1 ]]; then 
  maxFiles=3 
elif [[ ! $2 =~ ^[+-]?[0-9]+$ ]]; then 
  echo Usage: bscript2 startingFileNameLetters [maxFile=3] 
  echo where \'maxFiles\' is a number greater than 0  
  exit 1 
elif [[ $2 -lt 1 ]]; then 
  echo $2 is an invalid file count 
  exit 1 
else 
  maxFiles=$2 
fi 
 
# Assure 'startingFileNameLetters' is provided 
if [[ -z "$1" ]]; then 
  echo Usage: bscript2 startingFileNameLetters maxFiles 
  exit 1 
fi 
 
echo Here are the last $maxFiles files starting with \'$1\' 
ls -l "$1"* | tail -n$maxFiles 

Sample use: 

bash-3.1$ bscript2      
Usage: bscript2 startingFileNameLetters maxFiles 
bash-3.1$ bscript2 up per 
Usage: bscript2 startingFileNameLetters [maxFile=3] 
where 'maxFiles' is a number greater than 0 
bash-3.1$ bscript2 up 0   
0 is an invalid file count 
bash-3.1$ bscript2 up 1 
Here are the last 1 files starting with 'up' 
-rw-r--r-- 1 hseltman users  626 Mar 15 17:24 upper.o 
bash-3.1$ bscript2 up   
Here are the last 3 files starting with 'up' 
-rwxr-xr-x 1 hseltman users 5172 Mar 16 17:14 upper 
-rw-r--r-- 1 hseltman users  626 Mar 15 17:24 upper.c 
-rw-r--r-- 1 hseltman users 1128 Mar 16 17:09 upper.o 

  



4 
 

Details 

i. Reference: http://www.gnu.org/software/bash/manual/html_node/Bash-
Conditional-Expressions.html  

ii. “[[ ]]” is a “test”.  (For this class do not use the the old style with single 
brackets which is less safe and less powerful.)  A space after “[[“ and a space 
before “]]” are required. 

iii. Here are a list of some of the unary operators for inside the test.  A space 
between the operator and its argument is required. 

1. -n: argument is not of zero length (i.e., not blank) 

2. -z: argument is of zero length 

3. -d: argument is an existing directory 

4. -f: argument is an existing file 

5. -r, -w, and -x test if the argument is an existing file and is readable, 
writeable, or executable. 

iv. Here are a list of some of the binary operators for inside the test.  Spaces on 
both sides of the operator are required. 

1. = (or ==), !=, <, and > test strings (equal, unequal, sorts below, sorts 
above) 

2. -eq, -ne, -le, -ge, -lt, -gt test integers 

3. =~ does regular expression testing (re on the right) 

4. -nt and -ot require file arguments and test if the file on the left is newer 
(-nt) or older (-ot) than the one on the right 

v. Multiple tests can be separated by || (or), or && (and), or preceded by ! (not), 
and can have parentheses.  These operators are greedy, so the second part 
might never be evaluated. 

vi. “then” must be on a separate line (or use if [[ myTest ]]; then). 

vii. Note that if is ended by fi, which is “if” spelled backwards. 

viii. Linux programs and scripts have an exit code, which may be examined by the 
calling program.  By convention, “0” is OK.  It is good practice to provide a non-
zero exit code when an error occurs. 

ix. The syntax myVar=${otherVar:-defaultValue} will set “myVar” to the 
value $otherVar (either a name or the number of a positional parameter) if it 
exists.  But, if it does not exist, “myVar” is set to “defaultValue”. 

 

e. Shell script debugging: change “#!/bin/bash” to “#!/bin/bash -x” to see more 
detail of what is happening when you run your script. 

http://www.gnu.org/software/bash/manual/html_node/Bash-Conditional-Expressions.html
http://www.gnu.org/software/bash/manual/html_node/Bash-Conditional-Expressions.html


5 
 

f. Enhancement #3: Looping (bscript3) 

#!/bin/bash 
# Check which .c files are missing .o files 
# If .o is present, but .c is newer, recompile 
# and warn if failed. 
 
# basic numeric looping 
for i in {2..10}; do 
  echo $i squared is $(( i*i )) 
done 
echo 
 
# check all .c files 
for f in *.c; do 
  basename=${f%.*} 
  if [[ -f ${basename}.o ]]; then 
    echo $basename.c has been compiled to ${basename}.o 
    if [[ ${basename}.c -nt ${basename}.o ]]; then 
      echo ... but recompiling because .c is newer than .o 
      gcc -c "${basename}".c 
      if [[ $? -ne 0 ]]; then 
        echo Note: compile failed 
      fi 
    fi 
  else 
    echo ${basename}.c is being compiled to ${basename}.o 
    gcc -c "${basename}".c 
    if [[ $? -ne 0 ]]; then 
      echo Note: compile failed 
    fi 
  fi 
done 

 

Sample use: 

bash-3.1$ touch nothing 
bash-3.1$ bscript3 
2 squared is 4 
... 
10 squared is 100 
 
nothing.c has no corresponding nothing.o 
upper.c has been compiled to upper.o 
 
bash-3.1$ touch upper.c 
bash-3.1$ bscript3 
2 squared is 4 
...  
10 squared is 100 
nothing.c has no corresponding nothing.o 
upper.c has been compiled to upper.o 



6 
 

Details: 

i. Note that the syntax is: 

for var in list 
do 
  code lines 
done 

therefore for var in list; do may be convenient 

ii. {#..#} makes a sequence. 

iii. $(( expression )) evaluates an integer arithmetic expression (adding the $ signs) 

iv. ${f%.*}, where “f” is a shell variable name, drops an extension, while 
${f##*.} gets the file extension.  [% does match at the end and remove, while 
# does match at the beginning and remove. Single is shortest, double longest.] 

These are examples of “parameter expansion” (see 
http://mywiki.wooledge.org/BashGuide/Parameters#Parameter_Expansion)  

v. A file glob is a doubly-anchored “wildcard” pattern with special characters ?, 
[…], and * (first 2 match 1 char).  A glob can be the “list” needed in a “for” loop. 

vi. $? is useful for checking the most recent exit code. 

vii. Loops can be nested (based on syntax, not indenting) 

viii. Also available:  while [[ expression ]]; do; codelines; done 

g. more and less: The utility program more is typically used to aid in viewing long 
output, e. g., more myLongFile, or cat myLongFile | more, show only the 
first screen of the file.  Then press spacebar to see more or ‘q’ to quit.   

Even nicer is less: man bash | less will show the first screen of the bas 
manual.  Then use commands like “f” to go forward one screen, “b” to go back one 
screen, up-arrow to go back one line, down-arrow or Enter to go down one line, 
“/myREPattern” to go to the next match of regular expression “myREPattern” in the 
text, “n” to go to the next match of the previous pattern, “p” to go to the previous 
match, “q” to quit, and much more. 

h. Control characters: Here are a few useful bash control characters you should know: 

i. ctrl-c cancels whatever is going on (e. g., an infinite loop) 

ii. ctrl-a moves the cursor to the beginning of the line 

iii. ctrl-e moves the cursor to the end of the line 

iv. ctrl-s suspends output scrolling by on your screen, e.g., a very long listing such 
as “ls -R /”. 

v. ctrl-q restarts after suspending with ctrl-s.  If your terminal ever appears to 
be unresponsive, often that is due to accidentally typing ctrl-s, so try ctrl-q to 
get back to normal.  If you want to quit after ctrl-s, use ctrl-c then ctrl-q. 

http://mywiki.wooledge.org/BashGuide/Parameters#Parameter_Expansion


7 
 

i. The directory stack keeps track of your working directories: 

pwd 
pushd .  # save where I am working 
cd /usr/tmp 
ls 
dirs  # show the directory stack 
popd   # return to the last directory on the stack 

j. Get user input with read. 

read –p "Say something> " something 
echo "You said $something" 

k. Command substitution is the way to get the output of a command into a variable or 
to use it as the argument of another command 

i. The old form is “back ticks”.  The new, highly preferred form is $(). 

ii. Examples: 

echo one two three > 123.txt 
counts=`wc -l 123.txt`  # deprecated 
echo $counts 

cat upper.c | grep len | wc -l 
rslt=$(cat upper.c | grep len | wc -l) 
echo $rslt 

l. List constructs are commonly used to replace complex if statements.  There are 
two types: and (&&) and or (||).  In an “and list”, several commands are carried out but 
the rest of the list is not carried out if one fails.  In an “or list”, several command are 
carried out, stopping at the first successful command.  Think of this as following “greedy 
evaluation” rules. 

Here is an example that sets the variable “opts” from either a file called “opts.txt” in the 
working directory or a file called “opt.txt” in the home directory, or it is set to a default. 
opts= 
[[ -f opts.txt ]] && opts=$(cat opts.txt) 
[[ -z $opts ]] && [[ -f ~/opts.txt ]] && opts=$(cat ~/opts.txt) 
[[ -z $opts ]] && echo "default options set" && opts="a=0;b=0" 
echo "opts = " $opts 

 

You can also group statements with {} and “;” so that, e.g., the final clause prints a 
message and exits with a failure code. 

  



8 
 

m. More on redirection 

i. Each shell open three special files: stdin (input), stdout (standard output) and 
stderr (error output) and initially directs these to your terminal (keyboard and 
screen).  Many programs read and write exclusively or optionally (when no 
file(s) are specified) to these three files.  Such programs are often called 
“filters”.  By convention, programs should send normal output to stdout, and 
error messages to stderr. 

ii. The numbers 0 to 2 are assigned to stdin, stdout, and stderr respectively.  The 
redirection operators “<” and “>” are actually shortcuts for “0<” and “1>” 
respectively.  You can use “2>myFile” to direct any error output to a file.  To 
direct both error and standard output to a file, you need to use the special 
syntax “>myStdOutput 2>&1” which can be read as “direct stdout to 
‘myStdOutput’ (as file 1) and direct stderr to the ‘new’ (as specified by &) file 1.” 

iii. A common example is hiding errors, e.g.,  rm nonExistantFile 2> 
/dev/null, which uses the “bit bucket” to discard whatever is sent to it. 

iv. Another example is ls -R /* 2>/dev/null | grep 36602.  Without the 
redirection, we would see many “permission denied” messages.  (Note that a 
better way to do this task is: find / -type f –iname *36602* 
2>/dev/null.) 

n. Functions: 

i. Creation syntax: Start with functionName() {.  Then enter the bash code 
lines, using $1, etc. for function arguments.  End with }. 

ii. Use syntax: functionName( [arg1 [arg2 […]]]) 

iii. This works in a script file or outside. 

iv. Example:  

k() { 

( rm $1 2>/dev/null && echo OK ) || echo 'not OK' 

} 

k existingFile  # deletes it and says 'OK' 

k missingFile # says 'not OK' 

o. Learning more: 

See http://www.tldp.org/LDP/abs/abs-guide.pdf for advance scripting information. 

There is a great guide at http://mywiki.wooledge.org/BashGuide.  At least check out 
http://mywiki.wooledge.org/BashGuide/Practices.   

 

http://www.tldp.org/LDP/abs/abs-guide.pdf
http://mywiki.wooledge.org/BashGuide
http://mywiki.wooledge.org/BashGuide/Practices

